Adaptive response of single and binary Pseudomonas aeruginosa and Escherichia coli biofilms to benzalkonium chloride.
نویسندگان
چکیده
The main goal of this work was to examine whether the continuous exposure of single and binary P. aeruginosa and E. coli biofilms to sub-lethal benzalkonium chloride (BC) doses can induce adaptive response of bacteria. Biofilms were formed during 24 h and then put continuously in contact with BC for more 5 days. The six-day-old adapted biofilms were then submitted to BC challenge, characterized and inspected by SEM. Both single and binary adapted biofilms have clearly more biomass, polysaccharides and proteins and less activity even though the number of cells was identical. After BC treatment, adapted biofilms maintained their mass and activity. SEM examination revealed that those adapted biofilms had a slimier and denser matrix that became thicker after BC treatment. Continuous exposure of bacteria to antimicrobials can lead to development of biofilms encompassing more virulent and tolerant bacteria. This adaptive resistance can be the result of a phenotypic adaptation, a genetic acquired resistance or both. Instead of eradicating biofilms and kill microorganisms, the use of a disinfectant can, favour biofilm formation and tolerance. This must be a genuine concern as it can happen in clinical environments, where the use of antimicrobials is unavoidable.
منابع مشابه
MICROBIOLOGICAL EVALUATION OF SOME OPHTHALMIC PREPARATIONS CONTAINING DIFFERENT CONCENTRATIONS OF BENZALKONIUM CHLORIDE
Zinc sulphate and boric acid ophthalmic preparations, containing benzalkonium chloride as preservative, have been investigated against gram-negative and positive bacteria. Viability of bacteria was found after 7 days, although it was completely suppressed after 24 hours of inoculation. Zinc sulphate generally increases the antimicrobial activity of benzalkonium chloride, whereas boric acid ...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملEffect of Benzalkonium Chloride on Biofilm of Bacteria Causing Nosocomial Infectionstions
ABSTRACT Background and Objective: Biofilms are community of bacteria that attach to inanimate surfaces or living tissues via production of extracellular polymers and exopolysaccharide matrix. Microbial biofilms on various surfaces of the hospital environment are considered as a reservoir of infection spread. The present study aimed to evalu...
متن کاملThe effect of bromhexine, gentamicin and imipenem on biofilm of standard bacterial Escherichia coli and Pseudomonas aeruginosa by ELISA method
Background: Biofilms are a collection of microorganisms that have the ability to stick to different levels. Due to the difficulty of treatment of bacterial biofilm infections and their lack of recognition by conventional diagnostic methods, this study aimed to provide a new method of identification and the effect of related drugs on Pseudomonas aeruginosa and Escherichia coli biofilms. Material...
متن کاملMechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.
The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of basic microbiology
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2012